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MOLECULAR BEAM/MS OF SILANE-HYDICOCARBON OXIDATION IN A DISCHARGE FIX)W REACTOR

G. L. Pellett and B. R. Adams, NASA Langley Research Center, Hampton, VA 23665

Recent results are presented from low-pressure DFR/MB/MS studies of Cl-atom initiated

oxidation of He-diluted sileme, silane-methane, and silane-ethylene mixtures. Research
objectives have been to obtain direct evidence of free radical and molecular chain inter-

mediates, and to determine if reaction pathways for simultaneous oxidation of silane and

simple hydrocarbons (HC's) interact significantly. From the standpoint of scramjet

(supersonic combustion ramjet) propulsion we need to understand the effects of premixing

(vs. staged injection) of pyrophoric ignition aids, such as silane, with much lower

reactivity HC's. Dilution of pyrophorics using HC's has been proposed as a means of

simplifying fuel handling systems and reducing safety hazards while still retaining

acceptable ignition and flameholding characteristics in subscale scramjet combustors.

Experimentally, Cl-atom, produced by microwave discharge through He-diluted C12

(0.6 %) mixtures, was reacted with mixtures of He-diluted silane, or HC, or both at 1.8

torr in a 45 cm long, 2.1 ca, diameter, pyrex reactor. The present work differs from our

previous study (Proc. 32 nd Annual ASMS Conf.) in that (i) silane is reacted at lower

pressure (I.8 vs. 3.5 tort), for shorter times (13 vs. 20 ms), and with reduced wail

interaction; and (2) silane is reacted simultaneously with HC's, rather than sequentially

as before. This approach led to improved free radical detection, resolution of faster

reactions, and more favorable conditions for observing competitive silane/HC destruction.

Argon tracer and three selected masses were typically monitored simultaneously at

20 eY. Repetitive (4000) digital averaging of the modulated analog outputs, from the

quadrupole-MS/chopped-MB system, was utilized for both microwave--ON and OFF conditions.

Data from over 600 runs were obtained for various ions as functions of silane (or HC)

input flowrate (std. cc/min) under standard reaction conditions, defined in Fig. I.

Silane consumption (percent and absolute) by Cl-atom is shown in Fig. 2; an asymptote

of 4.25 SCCM silane is consistent with 50% overall Cl-atom efficiency, based on assumed

l:l reaction. Consumptions for methane and ethylene are compared with silane results in

Figs. 3 and 4. Note that addition of substantial ethylene to silane (dark symbols) had

little effect on silane consumption but significantly decreased ethylene consumption.

Additional results from silane-methane and -ethylene mixtures are summarized in Fig. 5.

Clearly, tile presence of substantial HC had little effect on silane consumption, but HC

consumptions were about I0 times smaller than normal until silane was nearly exhausted.

Silyl and SiH radicals are attributed primarily to "excess" ion ratios (microwave-ON) in

Fig. 6. Percent excess data for silyl radical from silane and silane-HC mixtures, Fig. 7,

indicate that silyl radical concentrations were large, at high silane consumptions, and

unaffected by presence of either HC. Methyl radical and Cl-atom data, Figs. 8 and 9,

apply only for Cl-atom attack on He-diluted methane. Note that day-to-day reproducibility

on the above data was generally quite good despite presence of surface reactions.

Second order kinetics plots are shown for the early phases of Cl-atom attack on

silane, ethylene, and methane, Fig. 10-12. The rate coefficient for methane agrees close-

ly with a carefully evaluated concensus k (NASA 1979). By comparison, k(CI+SiH4) is 60

times larger than k(CI+CH4) and 30 times larger than k(CI+C2H4). Finally, the relative

quantities of ions associated with disilane production/destruction are constant with added

silane, Fig. 13, and the resultant mass distribution is virtually identical with our

previous determination, Fig. 14.

In conclusion, the rate coefficient data indicate that silane destruction by Cl-atom

attack is respectively 60 and 30 times faster than for methane and ethylene, under identi-

cal conditions. Neither silyl radical concentration nor silane consumption are affected

much by the presence of substantial HC, but consumption of the respective HC's is signifi-

cantly inhibited until the silane is almost entirely consumed. In the case of methane

this inhibition may result in part from H-atom exchange reactions; e.g., which reform

CH4 +,SiH3 from reaction of SiH4 with initially-generated *CH3. Similar processes may

occur with ethylene, but in both cases the large difference in reactivity makes it diffi-

cult to assess quantitatively the relative importance of H-atom exchange processes during

simultaneous decomposition. Nevertheless, for applications which involve competitive

reactions leading to ignition, it appears that decomposition of silane and HC's should not

be assumed independent processes, and that chemical kinetic modelling should include

H-atom exchange pathways. Further efforts in this laboratory are planned at elevated

temperatures.
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